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Abstract. Suppose A and B are symmetric 3 x 3 matrices. Rotate one of them by 
c E SO(3) and add; the eigenvalues of the resulting matrix A + B" vary over a set 
determined by the eigenvalues of A and B. In the case where one of A and B has a 
repeated eigenvalue we find the image of SO(3) Haar measure do on this set, which 
describes the coupling of different rigid rotors. 

1. Introduction 

Several authors have considered the question of describing the possible eigenvalues of 
A + B ,  if A and B are symmetric n x n matrices with specified eigenvalues (see Horn 
1962, Lidskii 1982, Thompson 1986). An equivalent formulation is to let A and B be 
diagonal and consider A+B' ,  where the superscript means conjugation by U E S O ( n ) .  

In this paper we deal with the case of n = 3 and consider the related question of 
finding the image of the SO(3) Haar measure on the space of sets of eiger~values of the 
sum matrix, subject to  the condition that one of the matrices A and B has a repeated 
eigenvalue. 

This condition simplifies the problem because the parameter U can be taken to 
be in S0(2)\S0(3) .  Observing that the question is essentially unchanged by adding 
a scalar matrix to shift the eigenvalues, we can assume that the repeated eigenvalue 
is 0 and that the trace of A + B is zero. Multiplying by a scalar we can assume that 
B = d iag ( l , 0 ,0 ) .  

A generic (tri-axial) irreducible representation of the rotor group [R5]SO(3) is 
induced from a one-dimensional representation of the subgroup [W5]D,. The characters 
of R5 can be interpreted as sets of quadruple moments, given as symnietric 3 x 3 
matrices, and the induced representation is independent of conjugation by SO(3) (see 
Ui  1970, Weaver e l  a1 1973, Rowe e l  a1 1989). 

If two rigid rotors are coupled then the resulting quadrupole moments are found 
by adding the corresponding symmetric matrices, and they depend on the relative 
orientation of the original bodies. The measure we find i n  equation (4.2) gives the 
probabilistic weight with which each resulting rotor occurs, assuming random align- 
ment of the original rotors. In this way it is related to the problem of decomposing 
the tensor product of representations of the rigid rotor algebra [RI5SO( 3 ) .  
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2. Eigenvalues of the sum of two matrices 

We begin with the following easy lemma; a proof is included for completeness. 

Lemma 2.1 .  
(i.e. ( P v , v )  2 0, for every v E C:”). If the eigenvalues of A are a l  2 a2 2 
and the eigenvalues of A + P are s1 2 s:, 2 . . . 2 s,, then 

Suppose A is an n x n Hermitian matrix and P a positive n x n matrix 
. .  2 a, 

sk 2 a k  

for each k. (Adding a positive matrix causes the eigenvalues of a Hermitian matrix to 
‘increase’.) 

Proof. Suppose S k  < a k ,  for some k. Consider the matrix A - akl. The  sum of the 
A-eigenspaces corresponding to  the eigenvalues a, ,  . . . , ak is an A-invariant subspace 
V on which A - ak l  2 0. The dimension of V is a t  least I C .  

On the other hand, the sum of the (A + P) eigenspaces corresponding to the 
eigenvalues sk , sk+l , . . . , s, is an ( A  + P)-invariant subspace W on which A + P - akl  
is negative definite. The dimension of W is a t  least R - k + 1. 

Because of these dimensions, it is possible to find a non-zero v E V n W .  So 
O > ( (A + P - akl)v, U) 2 ( ( A  - akl)V) U) 2 O 

and the lemma is proved. 0 

Theorem 2.2. Suppose A and B are symmetric real 3 x 3 matrices, and that the 
eigenvalues of A are a 2 b 2 c and the eigenvalues of B are r 2 s 2 t .  If the 
eigenvalues of A + B are cy 2 /3 2 7 ,  then 

max(a + 1 ,  b + s, c + r )  5 cy < - a + r 

m a x ( b + t , c + s : )  5 P < m i n ( a + s , b + r )  

c + t < y s m i n ( a + t , b + s , c + r ) .  
Proof. First, 

CY = SUP ((A + B ) v ,  v) 5 sup ( A V ,  v)+ sup (Bv,  v )  = a + r.  
IIU II = 1 IIuII= 1 l l ~ I I = l  

Secondly, 

cy = sup ((A + B)v, v) 2 sup ( A V ,  U ) +  inf ( B v ,  v) = a + t .  
I I ~ I I = l  I I ~ I I = l  I lu l l= l  

Similarly a 2 c + T .  

If we let P be the projection onto the a-eigenspace of A ,  then P 2 0. The matrix 
A-(a-b)P has its b-eigenspace of dimension at least 2. Similarly, if Q is the projection 
onto the r-eigenspace of B ,  then B - ( r  - s ) Q  has an s-eigenspace of dimension at 
least 2.  

The intersection of these two eigenspaces must be non-trivial, which means that 
b + s is an eigenvalue of [A - ( a  - b)P] + [B - ( r  - s)Q].  Since A + B 2 [A - ( a  - 
b)P] + [B - ( r  - s)Q] the largest eigenvalue a of A + B must satisfy CI 2 b + s. 

This completes the inequalities for Q, and the inequalities for y are equivalent (by 
considering -A - B, for instance). 

Using lemma 2.1 we observe that since A 5 at the middle eigenvalue /3 of A + B 
must be less than or equal to  the middle eigenvalue of a l +  B ,  which is a + s. Similarly 
,f3 5 b + r ,  so /3 5 min(a + s, b + r ) .  The lower bound for /? is obtained in the same 

0 way (or by considering -A - B ) .  
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3. Barycentric coordinates and rotation parameters 

In fact, if ( a ,  p, y)  satisfy the inequalities of theorem 2.2 then they are the eigenvalues 
of a matrix of the form A + B, where A and B have the specified eigenvalues (cf Lidskii 
1982). However we will only prove this in a special case. 

I t  is convenient to plot the eigenvalues ( a , @ , 7 )  of a matrix S using barycentric 
coordinates. Assuming a 2 p 2 y, we associate to (a, p, y) the point 

in the plane. 
addition of a scalar matrix. 

other barycentric axes we find that 

This representation has the advantage that it is unaffected by the 

In particular, we can assume a + P + y = 0. In this case x = $a and along the 

(3.1) f(x - h y )  = -p and ~ ( z  1 + d y )  = -!y . 

Since this allows us to  write the eigenvalues a , / 3 , y  of S in terms of (z,y), we can 
easily compute the invariants of S. 

Lemma 3.1. If a 2 p 2 y satisfying a + P + y = 0 are the eigenvalues of S,  then 

22 1’ y’ 
det(S) = -(- - -) 

3 9  3 
b 2 ( S )  = aP + ay + Pr = - i ( Z 2  + Y 2 ) .  

Now we want to consider the matrix 

S ( u ) = ( “  b c ) + ( l  0 o)‘ (3.3) 

where the superscript indicates conjugation by U E SO(3) and for convenience a + b + 
c + 1 = 0. Writing 

1 0  0 cos0 - s in0  0 0 0 

0 s in$  cos$ 0 s i n 4  cos4  

we see tha t  S(u)  is independent of 4, and indeed 

( 3 . 5 )  
cos’ e + a 
- cos 0 sin 0 cos 4 
cos 0 sin e sin 4 

- cos 0 sin 0 cos 4 cos 0 sin 0 sin 4 
sin2 0 cos2 4 + b - sin’ 0 cos 4 sin 9 
- sin’ e cos 4 sin 4 sin’ e sin’ 4 + c 

It  is straightforward to calculate the determinant and the two-elementary sym- 
metric function 6’ of this matrix, and we find 

det (S(u) )  = abc + bc cos’ 0 + ab sin2 B sin’ 4 + ac sin’ B cos’ 4 

u2(S(a) )  = a sin’ 0 + b(cos’ 0 + sin’ Bsin’ 4) +  COS' 0 + sin’ 0 COS’ 4)  (3.6) 
+ ab + bc + ac 
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Now we ask for what U E SO(3) will the  matrix S ( u )  given by (3.5) have eigenvalues 
a , P , y .  Since the trace of S(u)  is zero, this amounts to asking when de t (S(u) )  and 
c2(S(u))  equal the corresponding invariants of the matrix diag(cr,@, y),  and these 
latter have been expressed in terms of (x, y) in lemma 3.1. 

The  conditions are 

2 x  I’ 
abc + bc cos’ 6 + absin’ 6 sin2 4 + a c  sin’ 6 cos’ 4 = - 

a sin’ 6 + b(cos’ 6 + sin’ 6 sin’ 4)  + c(cos2 6 + sin’ 6 cos’ 4)  
+ a b +  bc+ ac = - i ( x ’  + y’). 

3 (5-9 

We solve and find that 

2 U 

3 
--x3 - --I$ + - (2 + y2) - cos2 e = 

1 
2 7 ( ~  - b ) ( a  - C) (21  - 3a) ( r  - A y  + 3a)(x + h y  + 3a) - - 

(3.7) 

. 2  a - b  sin 4 = - 
b - c 2 x 3  - 6xy2 + 9a(z2 + y2) + 27(a  + a 2 ) ( b  + c )  - 27bc 

U - b  
b - c ( 2 2  - 3a)(z + d y  + 3a)(x - d y  + 3u) - 27(a  - b ) ( a  - c) ’ 

- 2 1 ~  + 6cy’ - 9 c ( x 2  + y’) + 27c3 

(3.9) 
- ( 2 I  - 3c)(z + f iy  + 3c)(x - A y  + 3c) -- - 

Using (3.1) we express the inequalities of theorem 2.2 in terms of z and y. We use 
T = 1, s = t = 0 and assume a + b + c + 1 = 0. The inequalities are 

3 
2 I T ( a +  1) 5 3 max(a,  c + 1) _< 

p - 

< i ( A y - 2 )  5 T m i n ( a , b +  3 1) (3.10) !b  - 
3 < -+(I+ A y )  5 Tmin(b , c+  3 1). 

Now suppose 2 and y satisfy these inequalities. To show that it is possible to  find 
U E SO(3) so that  the eigenvalues of S(u)  correspond to the point ( z , y ) ,  we must 
first show tha t  it is possible to solve for 6 using (3.8). To do this it is necessary and 
sufficient t o  know that the right-hand side of (3.8) lies between 0 and 1. 

First we note that from (3.10)) E 2 %a,  so 2x-3a 2 0. Secondly, i ( f i y - s )  I $ u s  

so 2 - A y  2 -3a and z-&y+3a 2 0. Similarly - $ ( c + d y )  5 ! b ,  so s+&y 2 -36 
and I + f iy  + 3a 2 3u - 3b 2 0. From this we conilude that the right side of (3.8) is 
non-negative. 

On the other hand, from (3.10) we see that T 5 ; ( a  + 1). so 22 - 3a I 3. Also, 
since f(z-&y) 5 -!b ,  we have 2-&y+3a _< 3(a-b), and since +(z+f iy)  5 -$c, 
we have I + f iy  + 3a 5 3(a - c). Together these inequalities show that the right side 
of (3.8) cannot exceed 1. 

We conclude that (3.8) determines a unique value of 0 E [O, 51 for every (.r ,y) 
satisfying (3.10). 

It  is slightly more difficult to show that the expression (3 9) for sin’d is I,et\veen 
0 and 1. 
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Theorem 3.2. If ( E ,  y) lies in the region specified by (3.10), then the right-hand side 
of (3.9) is between 0 and 1, so it is possible to solve for 4 E [0, ;]. 

Proof. I t  is easy to  check that for ! a  < E < $ ( a  + l ) ,  the right-hand side of (3.9) 
equals 0 when E + f i y  + 3c = 0 and equals 1 when E - f i y  + 3b = 0. These are the 
upper and lower edges respectively of the region specified by (3.10). 

Fixing E with $a  < E < ;(a + 1) and regarding the right-hand side of (3.9) as a 
function of y, we see it is of the form 

y2 - I P  
L - y2 

C -  (3.11) 

where C, I( ,  L are constants and C > 0. 
To show that it lies between 0 and 1 on the specified region we will show it decreases 

from 1 on E - d y + 3 b  = 0 to  0 on x +  A y +  3 c =  0. 
The function (3.11) may have singularities (at y = &a if L 2 0), but on any 

interval in [ O , o o )  which does not contain a singularity, it is monotonic (since the sign 
of the derivative does not change). 

So it will suffice to show that the denominator is non-zero on the specified region, 
since (3.11) must then be decreasing from 1 on the bottom edge to 0 on the top edge. 

On the top edge t + A y  + 3c = 0 with Sa < T < ! ( U  + l ) ,  the denominator of 
(3 .9)  is a positive constant times 

2 ( S E  - U)(.  - c ) ( Q t  + U  + C )  - 2a2 - U - be. 

This is a parabola opening upwards. At the right endpoint E = $ ( a  + 1) we use 
the relation a + b + c + 1 = 0 to find the denominator equals 0. At the left endpoint 
E = ;a the denominator equals -2u2 - a - bc = - (a  - b)(a - c ) ,  which is negative. 
We conclude that the denominator is negative for all E with $ U  < E < ! ( a  + 1). 

On the bottom edge T - A y  + 3b = 0 the denominator of ( 3 . 9 )  is a positive 
constant times 

( i ~  - U ) ( ~ T  + a + b ) ( a  - b )  - 2u2 - a - bc. 

Once again we find this is negative at  E = $a  and zero at  t = $ ( U  + 1). 
The denominator of (3.11), as a function of y with c fixed, is a downward-opening 

parabola with vertex at  y = 0. It is negative on both E + A y  + 3c = 0 and T - 
A y  + 3b = 0 for $ U  < T < $ ( a  + l ) ,  so it must be negative between them and 
therefore negative on the region (3.10), which lies inside the triangle bounded by 
E + f i y  + 3c = 0,  T - A y  + 3b = 0 and t = : U .  In particular it is not zero there. 

For each ( ~ , y )  in the polygonal region determined by (3.10) the formulae (3.8) 
and (3.9) define 0 E [0, $1 and q5 E [0, $1. Except on some of the boundaries 6 and d 
are uniquely determined. Ignoring this null set, it is possible to express 0 and 4 as 
functions of (2, y) .  

4. The invariant measure 

For our purposes the normalized Haar measure d o  on S0(2)\S0(3)  can he expressed 
in terms of the parametrization (3.4) as 

d o  = g s i n B d 6 d d  
x 
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with 0, 4 E [0, I]. 
We want to  consider the image of d a  on the space of eigenvalues and express it in 

Using the intermediate variables (az, det), the two-elementary symmetric function 
terms of the coordinates (t, y). 

and determinant of the matrix S(a), we can write 

Using (3.6) it is easy to  evaluate the first Jacobian determinant; we find 

= 4(a - b)(a - c)(b - c) cos 6’ sin3 0 cos 9 sin 9. 

From lemma 3.1 the other determinant is 

a ( az ,de t )  = -(3t2y 4 - y 3 ) I d x a y  I 27 

Substituting in (4.1), we obtain 

4 1 1 
27r(a - b)(a - c)(b - c) ‘ cos0 sinZ6 cos4 s i n 4  27 

. -(3z2y - y3)dz dy. d a  = 

Substituting the expressions from (3.8) and (3.9) and simplifying, we obtain 

x ((2t - 3b)(t + f i y  + 3b)(z - A y  + 3b)l-1/2 

x l(2z - 3c)(z + Ay + 3c)(z - A y  + ~ c ) j - l / ~ d ~  dy. 

5 .  Geometrical considerations 

I t  is interesting to interpret (4.2) in terms of the action of the GL(3) LVeyl group on 
(x, y) (i.e. the permutation action of W = S3 on triples of eigenvalues). 

The line t - Ay + 3a = 0 is the reflection of I + &y + 3a = 0 in the Weyl wall 
y = 0 and is also the reflection of 2x - 3a = 0 in the Weyl wall fit - y = 0. 

This means that  the factor ( (21: -2a) (z+4y+3a)(z  -&y+3a)\ is W-invariant, 
and similarly for the other factors in (4.2).  The weight function blows up as ( 2 , ~ )  

approaches certain sides of the polygon determined by (3.10), with a (-i)-power 
singularity. Some of the factors in the weight function provide this singularity and 
others are there ‘for symmetry’. 
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6. Two axially symmetric rotors 

In the preceding discussion we have assumed that one matrix has distinct eigenvalues 
a ,  b ,  c and the other has one double eigenvalue. If both matrices have a double eigen- 
value, the case which arises from the moments of inertia of two axially symmetric 
objects, then the question is simpler. 

Suppose the repeated eigenvalue is 0 for each matrix (by adding scalars as needed). 
If A = diag (U, 0,O) and B = diag(b, O , O ) ,  let 

S(u) = A + B" 

with a E SO(3) given by (3.4). Then the invariants of S(u)  are independent of q5 and 
$. 

Since A and B are both of rank 1 we see that 0 is always an eigenvalue of S(u) .  
The other two eigenvalues add up to  a + b .  

Multiplying by -1 if necessary, we assume a > 0 and a 2 Ibl. There are two cases 
to  distinguish: case 1, in which b > 0,  and case 2, in which b < 0. In case 1 the largest 
possible eigenvalue is obtained when the axes of symmetry are aligned and in case 2 
it is obtained when they are orthogonal. 

In case 1 it  is easy to  check that as a ranges over SO(3) the largest eigenvalue X 
of S(a) ranges over [a ,  a + b] (and the middle eigenvalue a + b - X ranges over [0, b ] ) .  

The normalized Haar measure on SO(2)\SO(3)/SO(2) is d a  = sinodd, for 0 E 
[0, $1 in the parametrization (3.4).  It is easy to  show that its image in terms of the 
largest eigenvalue X is 

In case 2, with a > 0 > b ,  a 2 Ibl, the largest eigenvalue X of S(a) ranges over 
[a + b ,  a ] ,  the middle eigenvalue is 0 and the smallest eigenvalue a + b - X ranges over 
[b ,O] .  The Haar measure in terms of the largest eigenvalue X is 

( 6 . 2 )  
- [(' + b)/21 dX. d a  = 

Jlabl(a - X)(X - b )  

Once again there is a singularity I X - U ~ - ' / ~  at  one boundary of the interval in each 
of (6.1) and (6.2). The other 'singularity' I X  - b1'/' is its Weyl reflection (the Weyl 
group reflects in ( a  + b ) / 2 ,  so the absolute value of the numerator is also invariant). 

It is interesting to  interpret the difference between (6.1) and (6.2) geometrically. 
In each case the weight function blows up at  one end of the interval and not the other. 
Roughly speaking, aligning the two axes of symmetry is rare (one degree of freedom in 
SO(3)) compared with having the axes orthogonal (two degrees of freedom in SO(3)). 
The measure weights move heavily the eigenvalue X = a corresponding to orthogonal 
axes than the opposite end of the interval which corresponds to aligned axes. 

Of course (6.1) and (6.2) can both be written as 



5724 J Repka and N Wildberger 

Acknowledgments 

The authors are grateful to David Rowe for suggesting the question and to the referee 
for useful remarks. 

References 

Horn A 1962 Eigenvalues of sums of Hermit,ian matrices Pae. J .  Math. 12 22541 
Lidskii B V 1982 Spectral polyhedron of a sum of two Hermitian matrices Funttsional’nyi A n a l i t  i 

Rowe D J, Vassanji M G and Carvalho J 1989 The coupled-rotor-vibrator model Nucl .  Phys. A 504 

Thompson R C 1986 Proof of a conjectured exponential formula Linear and Multilinear A / g e b r a  19 

Ego Prilozheniya 16 76-7 

76-102 

187-97 
Ui H 1970 Quantum mechanical rigid rotator with an arbitrary deformation I Prog. Theor. Phys. 44 

153-71 
Weaver L, Biedenharn L C and Cusson R Y 1973 Rotational bands in nuclei as induced group 

representations Ann.  Phys. 77 250 


